Ramanujan and Extensions and Contractions of Continued Fractions

نویسندگان

  • J. MC LAUGHLIN
  • NANCY J. WYSHINSKI
چکیده

If a continued fraction K∞ n=1an/bn is known to converge but its limit is not easy to determine, it may be easier to use an extension of K∞ n=1an/bn to find the limit. By an extension of K ∞ n=1an/bn we mean a continued fraction K∞ n=1cn/dn whose odd or even part is K ∞ n=1an/bn. One can then possibly find the limit in one of three ways: (i) Prove the extension converges and find its limit; (ii) Prove the extension converges and find the limit of the other contraction (for example, the odd part, if K∞ n=1an/bn is the even part); (ii) Find the limit of the other contraction and show that the odd and even parts of the extension tend to the same limit. We apply these ideas to derive new proofs of certain continued fraction identities of Ramanujan and to prove a generalization of an identity involving the Rogers-Ramanujan continued fraction, which was conjectured by Blecksmith and Brillhart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan and the Regular Continued Fraction Expansion of Real Numbers

In some recent papers, the authors considered regular continued fractions of the form [a0; a, · · · , a } {{ } m , a, · · · , a } {{ } m , a, · · · , a } {{ } m , · · · ], where a0 ≥ 0, a ≥ 2 and m ≥ 1 are integers. The limits of such continued fractions, for general a and in the cases m = 1 and m = 2, were given as ratios of certain infinite series. However, these formulae can be derived from ...

متن کامل

ON THE DIVERGENCE IN THE GENERAL SENSE OF q-CONTINUED FRACTION ON THE UNIT CIRCLE

We show, for each q-continued fraction G(q) in a certain class of continued fractions, that there is an uncountable set of points on the unit circle at which G(q) diverges in the general sense. This class includes the Rogers-Ramanujan continued fraction and the three Ramanujan-Selberg continued fraction. We discuss the implications of our theorems for the general convergence of other q-continue...

متن کامل

Modular relations and explicit values of Ramanujan-Selberg continued fractions

By employing a method of parameterizations for Ramanujan's theta-functions, we find several modular relations and explicit values of the Ramanujan-Selberg continued fractions .

متن کامل

Continued Fractions and Modular Functions

It is widely recognized that the work of Ramanujan deeply influenced the direction of modern number theory. This influence resonates clearly in the “Ramanujan conjectures.” Here I will explore another part of his work whose position within number theory seems to be less well understood, even though it is more elementary, namely that related to continued fractions. I will concentrate on the spec...

متن کامل

On the 1D and 2D Rogers-Ramanujan Continued Fractions

In this paper the classical and generalized numerical Rogers Ramanujan continued fractions are extended to a polynomial continued fraction in one and two dimensions. Using the new continued fractions, the fundamental recurrence formulas and a fast algorithm, based on matrix formulations, are given for the computation of their transfer functions. The presented matrix formulations can provide a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004